高二数学教学计划

时间:2024-07-13 21:51:16
高二数学教学计划范文锦集5篇

高二数学教学计划范文锦集5篇

时间过得太快,让人猝不及防,我们又将接触新的知识,学习新的技能,积累新的经验,为此需要好好地写一份计划了。什么样的计划才是好的计划呢?下面是小编为大家收集的高二数学教学计划5篇,仅供参考,希望能够帮助到大家。

高二数学教学计划 篇1

教学目标:

1、知识与技能

(1)了解算法的含义,体会算法的思想;

(2)能够用自然语言叙述算法;

(3)掌握正确的算法应满足的要求;

(4)会写出解线性方程(组)的算法;

(5)会写出一个求有限整数序列中的最大值的算法.

2、过程与方法

(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;

(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.

3、情感与价值观

通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.

教学重点、难点:

重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.

难点:把自然语言转化为算法语言.

教学过程:

(一)创设情景、导入课题

问题1:把大象放入冰箱分几步?

第一步:把冰箱门打开;

第二步:把大象放进冰箱;

第三步:把冰箱门关上.

问题2:指出在家中烧开水的过程分几步?(略)

问题3:如何求一元二次方程 的解?

第一步:计算 ;

第二步:如果 ,

如果 ,方程无解

第三步:下结论.输出方程的根或无解的信息.

注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:

①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

注:其他还有输入性、输出性等特征,结论不固定.

提问:算法是如何定义?

(二)师生互动、讲解新课

x-2y=-1 ①

回顾(课本P2内容): 写出解二元一次方程组 2x y=1 ② 的算法.

解:第一步,②×2 ①,得5x=1;③

第二步,解③,得x= ;

第三步,②-①×2得5y=3;④

第四步,解④ ,得y= ;

第五步,得到方程组的解为 x= ;y= 。

思考1:你能写出求解一般的二元一次方程组的步骤吗?

上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法

对于一般的二元一次方程组 可以写出类似的求解步骤:

第一步,①×b2-②×b1,得 ;③

第二步,解③,得 .

第三步,②×a1-①×a2,得 ;④

第四步,解④,得 ;

第五步,得到方程组的解为

(高斯消去法)

思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?

思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.

你认为:

(1)这些步骤的个数是有限的还是无限的?

(2)每个步骤是否有明确的计算任务?

总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.

算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.

广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算

法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.

(三)例题剖析,巩固提高

例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?

算法:

第一步,用2除7,得到余数1,所以2不能整除7.

第二步,用3除7,得到余数1,所以3不能整除7.

第三步,用4除7,得到余数3,所以4不能整除7.

第四步,用5除7,得到余数2,所以5不能整除7.

第五步,用6除7,得到余数1,所以6不能整除7.

因此,7是质数.

课堂练习1:

整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?

思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.

(1)用i表示2~88中的任意一个整数,并从2开始取数;

(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;

(3)这个操作一直进行到i取88为止.

你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?

算法设计:

第一步,令i=2;

第二步,用i除89,得到余数r;

第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;

第四步,判断“i>88”是否成立?若是,则89是质

数,结束算法;否 ……此处隐藏2384个字……

2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

五、教学措施:

1、积极参加与组织集体备课,共同研究,努力提高授课质量

2、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

3、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。

4、加强数学研究课的教学研究指导,培养学识的动手能力。

5、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

6、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

7、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“发现式教学模式”为主的教学方法,全面提高教学质量。

六、课时安排:

本学期共81课时

1、不等式18课时

2、直线与圆的方程25课时

3、圆锥曲线20课时

4、研究课18课时。

高二数学教学计划 篇5

周次


内容


课时


备注


第1周


(2月29日3月4日)


第一章常用逻辑用语


1.1命题及其关系


2


政治学习三天


第2周


(3月7日3月11日)


1.2充分条件与必要条件


1.3简单逻辑联结词


1.4全称量词与存在量词


小结


2


2


1


1



第3周


(3月14日3月18日)


单元小测


第二章圆锥曲线与方程


2.1曲线与方程


2.2椭圆


2.3双曲线


1


1


3


1



第4周


(3月21日3月25日)


2.3双曲线


2.4抛物线


2


4



第5周


(3月28日4月1日)


小结


单元小测


第三章空间向量与立体几何


3.1空间向量及其运算


1


1


4



第6周


(4月4日4月8日)


3.1空间向量及其运算


3.2立体几何中的向量方法


2


4


清明节


休一天


第7周


(4月11日4月15日)


3.2立体几何中的向量方法


小结


单元小测


第一章导数及其应用


1.1变化率与导数


1.2导数的计算


1


1


1


2


1



第8周


(4月18日4月22日)


1.2导数的计算


期中考试


3


3



第9周


(4月25日4月29日)


1.3导数在研究函数中的应用


1.4生活中的优化问题举例


1.5定积分的概念


2


3


1



第10周


(5月2日5月6日)


1.6微积分基本定理


1.7定积分的简单应用


小结


单元小测


2


2


1


1


五一


第11周


(5月9日5月13日)


第二章推理与证明


2.1合情推理与演绎推理


2.2直接证明与间接证明


3


3



第12周


(5月16日5月20日)


2.3数学归纳法


第三章数系的扩充与复数的引入


3.1数系的扩充与复数的概念


3.2复数代数形式的四则运算


2


2


2



第13周


(5月23日5月27日)


第一章计数原理


1.1分类加法计数原理与


分布乘法计数原理


1.2排列与组合


2


4



第14周


(5月30日6月3日)


1.3二项式定理


2.1离散型随机变量及其分布列


3


3



第15周


(6月6日6月10日)


2.2二项分布及其应用


2.3离散型随机变量的均值与方差


2.4正态分布


2


3


1



第16周


(6月13日6月17日)


复习考试


6



第17周


(6月20日6月24日)


期末考试




第18周


(6月27日7月1日)


成绩分析




《高二数学教学计划范文锦集5篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式