有关五年级数学说课稿范文六篇
在教学工作者实际的教学活动中,很有必要精心设计一份说课稿,借助说课稿我们可以快速提升自己的教学能力。怎么样才能写出优秀的说课稿呢?以下是小编为大家收集的五年级数学说课稿6篇,希望能够帮助到大家。
五年级数学说课稿 篇1一、说教材分析
1、教学内容:数学五年级下册第四单元的内容,分数加减混合运算。
2、教材内容所处的地位:本单元教学异分母加、减法以及分数加减混合运算。这是在学生已经掌握同分母分数加、减以及认识分数的意义和基本性质的基础上教学的。本单元知识既是分数加、减运算的重要内容之一,也是以后进一步学习分数乘、除法以及分数四则混合运算的重要基础。
异分母分数的加、减运算顺序和整数加减运算的运算顺序相同,因此异分母分数加、减运算的关键是把要相异的分母化成相同的分母,即通过通分使算式的分母相同,然后按照整数的加减运算法则进行计算。在对分数的教学过程中,单位“1”非常重要,任何一个整体我们都可以把它看作单位“1”,然后利用分数的知识来解答。在分数的计算过程中,整数的运算法则同样适用,例如加法交换律、加法结合律,这些规律的使用能使分数加、减运算更加简便,应注意使用。
3、教材的重难点:
(1)能运用运算法则正确进行计算。
(2)使学生掌握什么时候一次通分好,什么时候分步通分好。
(3)利用分数混合运算的法则解决日常生活中的实际问题,发展应用意识。
4、教学目标:
(1)使学生联系具体的问题情境,理解并掌握分数加减混合运算的运算顺序,能正确进行分数加减混合运算。
(2)使学生能用分数加减法解决一些简单的实际问题,进一步提高解决实际问题的能力,发展数学应用意识。
(3)使学生在学习活动中,获得成功的体验,增强学习数学的自信心。
二、设计理念
(1)注重新课程理念的体现,主动让学生参与。
(2)教学中以学生为主体,并且让不同的孩子有不同的收获。
(3)数学教学活动建立在学生的认知发展水平和己有的知识经验基础上。
三、教法和学法
根据教材呈现的内容,在开展教学活动时可以从以下几个方面思考。
1、出示情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而列出算式。
2、讨论具体的计算方法。教材中呈现了两种计算方法。在这个过程中,教师可以先让学生自主进行计算,再组织讨论和交流算法之间的联系,明白分数混合运算的顺序。
通过本节教学,使学生学会运用直观的教学手段理解掌握新知识,学会有顺序的观察题、认真审题、画线段图、分析数量关系、正确计算、概括总结、检查的学习习惯。
四、教学程序
一)铺垫准备:
1、口算
2、计算下面各题。
二)探究新知:
新课导入:这节课,我们学习新的内容——分数加、减混合运算。
(板书课题:分数加减混合运算)
(一)教学例1(没有括号的算式计算方法)【演示课件“分数加减混合运算”】
教师提问:回忆一下整数加减混合运算的运算顺序是怎样的?
学生回答:整数加减混合运算顺序是从左往右依次计算、遇到有括号的,应该先算括号里面的。
教师谈话:请同学们打开书136页读一下第一段的文字、这一段告诉我们什么内容?
学生回答:这段文字告诉我们:分数加减混合运算的运算顺序与整数的相同;为了简便,几个分数可以一次通分,然后按照运算顺序依次进行计算。
1、出示例1:计算
2、观察算式:这是一个加减混合运算的等式;
三个分数是异分母的分数,计算时应当从左往右计算;
分母不同,计算时应先通分。
3、学生独立解答。
第一种算法:第二种算法:
思考:这两种算法有什么不同?哪一种简便?
教师强调:三个分数是异分母分数,先一次通分比较简便。
4、总结没括号算式的计算方法。
5、反馈练习:
(二)教学例2(有括号的算式的计算方法)【继续演示课件“分数加减混合运算”】
1、出示例2计算
教师提问:请同学们观察一下这个算式与例1有什么不同?(有了小括号)
这道题的运算顺序是什么?(这道题的运算顺序是先算括号里面的,再算括号外面的)
2、学生独立解答。
思考:这道题为什么分步通分计算比较好?
3、总结有括号算式的计算方法。
4、反馈练习。
三)全课小结
今天我们学习了什么内容?它的运算顺序是怎样的?
四)随堂练习
1、填空。【继续演示课件“分数加减混合运算”】
分数加减混合运算的运算顺序和____________相同、没有括号的分数加减混合运算顺序是:______________;有括号的分数加减混合运算的运算顺序是先算____________,后算______________、
2、计算。
五、布置作业
六、板书设计
分数加减混合运算
分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同
七、教学反思
在教学中特别注意以下几方面的内容:
1、采用有意义的接受方式教学分数加减法混合运算的顺序。
四则混合运算的顺序是人为规定的知识(尽管这种规定也赋予了它一定的实际意义),因此,在教学本例的知识点“运算顺序”时,直接告诉学生,分数加减法的混合运算的顺序与整数加减法的相同,引导学生将已掌握的整数加减法混合运算的顺序迁移到分数加减法运算中来。
2、关注理解题意的教学。
本例的两个例子,均以表格的方式呈现其内容,因此,让学生读懂表格的意思是本例教学的首要环节。在学生理解了题意的基础上再来列式解答。
3、根据分母的特点灵活选择计算方法。
计算分数加减混合运算时,是分步通分好还是一次通分好,应根据分母的特点合理作出判断。同时指出,通分的过程,熟练了以后可以不写,不断提高自己的计算能力。
4、培养认真书写的良好习惯。
分数加减法混合计算的步骤在两步以上,学生在按步写出每一次计算的过程时,应严格要求按教科书中呈现的格式书写,等号一律对齐,分数线在同一条直线上。同时提醒学生,最后的结果要化成最简分数。
五年级数学说课稿 篇2一、说教材分析
1、教学内容: ……此处隐藏8383个字……,使情感目标得到升华。
(4)全课小结
请同学们相互交流一下今天你有那些收获?在选出小组代表说一说。进一步明确学习目标,抓住要点内容,形成系统的知识结构。
这节课,我通过让学生摆一摆,说一说,量一量,看一看等试验,猜想,验证,巩固的方式使整节课善始善终。
我的说课完毕,谢谢大家!
五年级数学说课稿 篇6一、说教学理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。
二、说教材
1、教学内容
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。在讲解这一知识点时,应注意加强整数商不变性质的回顾,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
教学重点:
理解和掌握分数的基本性质
教学难点:
学习自主探索,发现和归纳分数基本性质,以及应用它解决相应的问题。
教具学具:
课件,三张同样大小的长方形纸条、彩笔。
三、说教法
“将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同
的分数,并尝试完成练习题,达到检验自学的目的。
五、说教学过程
(一)、创设情境激趣引新
(二)、新知探索
动手操作、形象感知
观察比较、探究规律
首尾照应、释疑解惑
(三)、巩固新知
判一判填一填找一找
(四)、扩展延伸
1、创设情境,激发兴趣,揭示课题。
上课伊始我利用阿凡提为三兄弟分地的故事来激发学生的学习兴趣,让学生亲自动手折一折、分一分、比一比,从直观上让学生感受到这几个分数大小是相等的,而这几个分数的分子和分母都不相等,这其中有什么规律呢?继而揭示课题。
(设计意图)好奇是学生的天性,通过分地故事能快抓住学生的好奇心,使他们在心理上产生悬念,带着疑问迅速切入正题。
2、探索新知
(1)、动手操作、形象感知
首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/3,2/6,4/8。观察涂色部分,说说发现了什么?在学生汇报时,说出:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。
(设计意图)主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。
(2)、观察比较,探究规律
首先,在学生折纸的基础上,通过小组讨论交流总结出分数的基本性质,让学生理解“同时乘上或者除以”的意义,以及为什么要强调“0除外”这个条件。其次,总结出分数的基本性质后,要和以前学过的商不变规律进行对比,找出二者间的联系,使学生更好的理解、运用性质。
(设计意图)这一环节重在培养了学生大胆交流、语言表达的能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。要充分放手,让学生畅所欲言。
3、巩固新知
在巩固阶段,我安排了三个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=()/()的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
4、拓展延伸
通过质疑反思、步步深入的交流活动,学生对分数的基本性质探究更深入,理解更完善。此时学生的视野已不尽限于分数的基本性质,而是扩展到研究分数大小变化的规律;最后的拓展性提问,使学生思维发散,联系实际,运用规律,并自然引出以后的学习内容,激发学生不断探索新知的欲望。
六、板书设计
分数的基本性质。
分数的分子、分母同时乘以或除以相同的数。
分数的大小不变。